
Executing code in the TrustZone land
Edgar Barbosa
SyScan360 ‐ Shanghai
2016



Me
Edgar Barbosa

Senior Security Researcher
COSEINC ‐ Singapore

https://google.com/#q=Edgar+Barbosa+COSEINC
twitter.com/embarbosa

https://google.com/#q=Edgar+Barbosa+COSEINC
http://twitter.com/embarbosa


Agenda
What is TrustZone?

TZ Applications
TZ Architecture
Secure Boot
Executing TZ code

Reverse Engineering



Disclaimer
This talk provides only introductory level information about
TrustZone
There are so many undocumented things about TrustZone
that's not even funny to talk about. Some things also requires
signing NDA ಠ_ಠ

The Android ecosystem is a huge mess!
Btw, is Android really open source?



TrustZone ﴾TZ﴿
TZ is a set of security extensions added to ARM processors
Can run 2 operating systems

secure operating system

normal operating system
Hardware protection/isolation of memory and devices



2 worlds

https://genode.org/documentation/articles/trustzone

https://genode.org/documentation/articles/trustzone


Features



Applications
Secure storage of crypto keys/secrets

Trusted User Interface ﴾keypad/screen﴿
DRM ﴾obviously!﴿
Payment solutions
...



Applications



TrustZone ‐ architecture



ARM Execution Levels ﴾EL﴿
4 executions levels ﴾EL﴿:

EL0 ‐ usermode
EL1 ‐ kernel ﴾normal OS﴿

EL2 ‐ hypervisor
EL3 ‐ highest level ﴾secure OS﴿ ‐ TrustZone



TrustZone EL



Trusted Execution Environment ‐ TEE



TEE

source: https://www.cs.helsinki.fi/group/secures/CCS‐
tutorial/tutorial‐slides.pdf

https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf


Qualcomm Secure Execution
Environment ‐ QSEE

TEE from Qualcomm ﴾driver is open source﴿



SMC
Secure Monitor Call instruction

Requires kernel ﴾EL1﴿ privilege to be executed
Need a device driver
Linux kernel provides some functions

The bridge between the secure and normal world
There is usually an interface between user‐mode applications
and TEE device drivers



SCM ‐ Linux kernel

http://lxr.free‐electrons.com/source/arch/arm/mach‐msm/scm.c?
v=3.0#L171

http://lxr.free-electrons.com/source/arch/arm/mach-msm/scm.c?v=3.0#L171


Secure Configuration Register
co‐processor CP15 c1
defines current world as Secure/Non‐secure
accessible in secure privileged modes only



NS bit
Non‐Secure bit

In Secure mode the state is considered Secure regardless of
the state of the NS bit



World switch

src: https://www.cs.helsinki.fi/group/secures/CCS‐
tutorial/tutorial‐slides.pdf

https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf


Learning TrustZone
What options do you have if you want to learn TrustZone by
creating real code to run with TZ privileges?

ARM Development boards
QEMU



Poor Mr Gigu



OMAP 4430 ‐ Texas Instrument ﴾TI﴿



OMAP 4430 ‐ TrustZone support



You'll have a very hard time

http://stackoverflow.com/questions/7955982/arm‐trustzone‐
development

http://stackoverflow.com/questions/7955982/arm-trustzone-development


Trustzone development
To be fair the situation now is better.
More information available on the web

Open‐source reference implementations



QEMU
The good folks at Linaro implemented a patch to allow QEMU
to run TrustZone extensions
http://www.linaro.org/blog/core‐dump/arm‐trustzone‐qemu/

But I need to run TZ code on a real device!
Let's find a way to do it! :﴿

http://www.linaro.org/blog/core-dump/arm-trustzone-qemu/


TrustZone ‐ Secure Boot



TrustZone ‐ Secure Boot
"SecureBoot is an on‐chip, tamper resistant, ROM‐based boot‐
up process that verifies the authenticity and integrity of critical
code and data stored in flash memory."

"The secure boot process controls the system immediately
after reset by executing a known code resident in on‐chip Read
Only Memory ﴾ROM﴿. This code is the system’s root of trust,
and authenticates the code used by the device."



Chain of Trust ﴾CoT﴿ ‐ Boot ﴾1/2﴿
TrustZone code integrity is protected by secure boot which is
based on a Chain of Trust ﴾similar to TPM chipsets﴿:

1. After reset the device starts executing the PBL ﴾Primary Boot
Loader﴿

2. The PBL is stored in read‐only‐memory ﴾ROM﴿ ‐ it is the initial
point in the chain ‐ it is a trusted code.

3. Now each step of the boot process will load and authenticate
the next step module/code before executing it!



CoT ﴾2/2﴿
4. The PBL will load and authenticate the Secondary Boot Loader

﴾SBL﴿
5. The SBL will load and authenticate the TrustZone code
6. SBL will then load the Android kernel ﴾aboot partition﴿ and

execute it



[src] http://bits‐please.blogspot.sg/

http://bits-please.blogspot.sg/


The target device



Xiaomi Redmi Note 2



Xiaomi Redmi
A very nice Android phone

Clean UI
Comes with just a few apps

Different from Samsung that comes with tons of useless
apps

Cheap. Great value for the money
Best of all: allows me to run my TrustZone code :﴿



Attack surfaces
QSEE/TEE devices ﴾ioctl﴿
TrustZone system calls ﴾accessible using SCM instruction﴿

requires priviledged access
There is another attacker surface that has been ignored
probably because it should obviously brick the device.



Remember Secure Boot?
This is how it is supposed to work



Secure boot



Xiaomi Redmi
The Xiaomi Redmi secure boot process will not fail if you
overwrite the TrustZone partition!

The Secondary Boot Loader will load, authenticate and execute
the new TrustZone image regardless of the authentication
result!



How?
Two methods:

 fastboot flash patched_tz.img 

 dd if=patched_tz.img of=/dev/block/.../tz  ‐ root required

It just works!



What now?
We can run our own TZ code
We don't need to create a secure OS from scratch

also, we don't have access to all the documentation we
need for such a herculian task

We can use the available TZ code and patch it
But before, we need some reverse engineering of tz.img



Reverse Engineering TrustZone code



Reversing
Obvious first steps:

1. Locate and copy the Trustzone partition
2. Disassembling
3. Analysis

4. ARM code generation
5. Patching



TZ partition ‐ block devices



TrustZone
2 TrustZone images  tz  and  tzbak . They are the same. If  tz  is
corrupted,  tzbak  is loaded instead.
Just copy it using  dd 





Strings Paradise!



System calls
TrustZone system calls are a good initial target for patching
Now that we have access to the trustzone image let's start by
locating the exported system calls.
You can find the name of the system calls using  strings  and
 grep 



Syscalls



Syscalls ‐ no xref



Searching xref



Search result



Pointer to syscall name



Pointer to the syscall code



 tzbsp_pil_init_image_ns  syscall



There is a pattern!



SMC table format

Detailed table format explanation:
http://bits‐please.blogspot.sg/2015/08/exploring‐
qualcomms‐trustzone.html

Now we can patch a system call

http://bits-please.blogspot.sg/2015/08/exploring-qualcomms-trustzone.html


Patching ELF headers ﴾segments﴿

There is only one executable segment on the original TZ image
The first experiment was to patch the  get_version  system call
To give more space for the new code we expanded the
segment to the maximum allowed value



Patching ELF headers ﴾segments﴿

Expand ﴾maximize﴿ eXecutable segment
range  0x86500000 ‐ 0x865351b8 
range  0x86500000 ‐ 0x86536000 



Patching  get_version 



Patching problems
I created a new function at the end of the expanded segment
and patched the  get_version  with a branch to the new
function.
It works!  get_version  was returning a new value.

To have even more space to create new functions I decided to
create a new segment in the TrustZone image



Patching ELF ‐ new executable segment



New segment
Patched  get_version  again to branch to the new segment
Phone freezes for a while and reboots!

Suspected the reason is some memory protection after triple‐
checking the permissions of the new segment
Solution: disable memory protection!



DACR register
Domain Access Control Register
All regions of memory have an associated domain. A domain
is the primary access control mechanism for a region of
memory.
Holds the access permissions for a maximum of 16 domains.
Protection of each domain encoded inside 2‐bit fields



DACR register

11 → Access not checked!



Patching
After disabling DACR, executing code in the new segment
works!!!

Only one problem!
The phone freezes if you try to shutdown the phone!

Somehow the disabled DACR protection interferes with the
shutdown process.
Solution?

Disable DACR before jumping to the new segment
Enable DACR again after return!



Patch ‐ DACR disable/enable



Generating ARM code
At the start of the project I had only 1 option: to use  GNU as 
assembler. It was a nightmare!

Fortunately some months later the  Keystone Engine  assembler
framework was released and I could use Python to generate
the arm code! Easy!

http://www.keystone‐engine.org/

http://www.keystone-engine.org/


Executing your code
Just create a device driver

Linux provides the  scm  and  scm_call  functions!
Tip:

Sometimes building the open source Linux kernel of an
Android device is an impossible mission

Again, is Android really open source? :﴿
You can extract the symbols of the binary kernel using this
little wonderful tool: https://github.com/glandium/extract‐
symvers and build your device driver
"Building a Linux kernel module without the exact kernel
headers": https://glandium.org/blog/?p=2664

https://github.com/glandium/extract-symvers
https://glandium.org/blog/?p=2664


Undocumented
That's all you need to create TZ code for your device
We need more reverse engineering of TZ
There are some functions that are really difficult to
understand/reverse
References to devices and memory mapped I/O regions where
I couldn't find any documentation



Reversing TZ ‐ Bad news ಠ_ಠ
Things are changing...

They removed the  tzbsp  strings and modified the syscall table
format!

﴾╯°□°）╯︵ ┻━┻



Not all is lost yet
Latest version of Xiaomi TZ ﴾this week﴿

There are still a few  tzbsp  strings available



Same process applies



Search again ...



Table found!

There are no more pointer to strings
Detection of table can be easily automated with IDAPython



Next ﴾1/2﴿
I have now full access to TZ and a framework that allow me to
patch the TZ image to execute any experiment
No need for NDA, dev boards, emulation. Freedom to learn!
No TrustZone debugger! We are blind now.

Idea: implement a debugging interface by patching TZ



Next ﴾2/2﴿
We need to find other devices that allow us to write on the TZ
partition or find more methods to access TZ

Don't blame me if you brick your phone!
I'm trying to unlock other devices. Will post any new
information on my Twitter account.

Have fun with TZ!
but no rootkits, please!
Rootkits are lame :﴿



Thank you!



Greetz!
Sheng Di @sheng0x64
TrustZone Jedi Hacker Master Gal Beniamini @laginimaineb
Jonathan Levin @Morpheus______

https://twitter.com/sheng0x64
https://twitter.com/laginimaineb
https://twitter.com/Morpheus______


References 1/2
Best references about TrustZone hacking/internals:

1. http://bits‐please.blogspot.sg/
2. http://technologeeks.com/files/TZ.pdf

3. http://technologeeks.com/files/TrustZone.pdf

http://bits-please.blogspot.sg/
http://technologeeks.com/files/TZ.pdf
http://technologeeks.com/files/TrustZone.pdf


Reference 2/2
1. http://blog.csdn.net/u011279649/article/details/45250979
2. http://huaqianlee.github.io/2015/08/23/Android/高通Android

设备启动流程分析‐从power‐on上电到Home‐Lanucher启动/

3. http://forum.xda‐developers.com/showthread.php?
t=1769411&page=24

4. http://www8.hp.com/h20195/v2/getpdf.aspx/4AA5‐
6428ENW.pdf?ver=1.0

5. https://www.arm.com/files/pdf/Tech_seminar_TrustZone_v7_PU
BLIC.pdf

6. https://android.googlesource.com/platform/prebuilts/gcc/linux
‐x86/arm/arm‐eabi‐4.6/

7. https://www.isc2cares.org/uploadedFiles/wwwisc2caresorg/Co
ntent/Android‐Security‐Report‐FrostSullivan.pdf

http://blog.csdn.net/u011279649/article/details/45250979
http://huaqianlee.github.io/2015/08/23/Android/%E9%AB%98%E9%80%9AAndroid%E8%AE%BE%E5%A4%87%E5%90%AF%E5%8A%A8%E6%B5%81%E7%A8%8B%E5%88%86%E6%9E%90-%E4%BB%8Epower-on%E4%B8%8A%E7%94%B5%E5%88%B0Home-Lanucher%E5%90%AF%E5%8A%A8/
http://forum.xda-developers.com/showthread.php?t=1769411&page=24
http://www8.hp.com/h20195/v2/getpdf.aspx/4AA5-6428ENW.pdf?ver=1.0
https://www.arm.com/files/pdf/Tech_seminar_TrustZone_v7_PUBLIC.pdf
https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/
https://www.isc2cares.org/uploadedFiles/wwwisc2caresorg/Content/Android-Security-Report-FrostSullivan.pdf

